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Lecture Outline
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3 Types of data and labels

4 Common learning objectives and generalization
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[credit: some slides in this lecture were co-developed with Louis-Philippe Morency for CMU course 11-777]
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What is a Sensory Modality?

Sensory modality

Modality refers to the way in which something expressed or perceived.

from a sensor
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Modalities
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(closest from sensor)

Detected 

objects

Sentiment 

intensity

Object 

categories

(farthest from sensor)
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Most of AI is about learning abstractions, or representations, from data.



Visual Modality

Dog ?
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problem

Color image
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Visual Modality

Dog

…

Cat

Duck

Pig

Bird ?

Each pixel
is represented 
in ℛ𝑑 , d is the 
number of 
colors 
(d=3 for RGB)

-or-

-or-

-or-

-or-

label 𝑦𝑖 ∈ 𝒴 = {0,1,2,3, … }
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Multi-class classification 
problem

7

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]



Language Modality
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“one-hot” vector

𝒙𝒊 = number of words in dictionary

Word-level 
classification

Sentiment ?
(positive or negative)

Part-of-speech ?
(noun, verb,…)

Named entity ?
(names of person,…)
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Language Modality
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…
“bag-of-word” vector

𝒙𝒊 = number of words in dictionary

Document-level 
classification

Sentiment ?
(positive or negative)

Response?

What happens with word ordering?
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Acoustic Modality

Digitalized acoustic signal

• Sampling rates: 8~96kHz
• Bit depth: 8, 16 or 24 bits
• Time window size: 20ms

• Offset: 10ms

Spectrogram
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Acoustic Modality

Digitalized acoustic signal

• Sampling rates: 8~96kHz
• Bit depth: 8, 16 or 24 bits
• Time window size: 20ms

• Offset: 10ms

Spectrogram

0.21
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0.58
0.9
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0.79
0.45
0.34
0.24

Spoken word ?

Voice quality ?

Emotion ?
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Sensor Modality

Time series data across six-
axis Force-Torque sensor:
T × 6 signal.

Measure values internal to the system (robot); 
e.g. motor speed, wheel load, robot arm joint 
angles, battery voltage.

Time series data across 
current position and velocity 
of the end-effector:
T × 2 signal.

Object property
Next action

[Lee et al., Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks. ICRA 2019]
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[Johnson et al., MIMIC-IV: A Freely Accessible Electronic Health Record Dataset. Scientific Data 2023]

Tabular Modality
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Graph Modality

Tasks on graphs:
Node classification
Link prediction
…

Using graphs:
Knowledge graphs for 

QA
Social network for 

sentiment analysis
…

[Hamilton and Tang, Tutorial on Graph Representation Learning. AAAI 2019]
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Set Modality

Set anomaly detection
Set expansion
Set completion
Point cloud classification
Point cloud generation

Point clouds

Sets

[Zaheer et al., DeepSets. NeurIPS 2017 and Li et al., Point Cloud GAN. arxiv 2018]
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Modality Profile

The qualities and structures that are unique to a data modality.

A teacup on the right of a laptop
in a clean room.
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Modality Profile

{teacup, right, laptop, clean, room}

{ ,    ,  }

A teacup on the right of a laptop
in a clean room.

1 Distribution: discrete or continuous, support

The distribution of individual elements within that modality.
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Modality Profile

2 Granularity: sampling rate and frequency

words per minute

objects per image

A teacup on the right of a laptop
in a clean room.

The frequency at which elements appear or are sampled.
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Modality Profile

3 Structure: static, temporal, spatial, hierarchical

…

The way elements compose with each other to form entire data.
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Modality Profile

4 Information: entropy and density

A teacup on the right of a laptop
in a clean room.

𝐻( )

𝐻( )

The total information contained in the elements and their composition.
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Modality Profile

5 Noise: uncertainty, signal-to-noise ratio, missing data 

teacup → teacip 

right → rihjt 

A teacup on the right of a laptop
in a clean room.

The natural imperfections in the data modality.
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Modality Profile
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1 Element representations:

2 Element distributions:

3 Structure:

4 Information:

5 Noise:

6 Relevance:

Modality A Modality B

Discrete, continuous, granularity

Density, frequency

Temporal, spatial, latent, explicit

Abstraction, entropy

Uncertainty, noise, missing data 

Task, context dependence

𝐻( ) 𝐻( )

𝑦1 𝑦2
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(the categorization can be refined, e.g. there are active learning, semi-supervised, selective, contrastive, 
few-shot, inverse reinforcement learning… )

[Slides adapted from 6.790]

Types of Learning Paradigms
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Goal: predict to what degree 
a drug candidate binds to 
the intended target protein 
(based on a dataset of 
already-screened molecules 
against the target)

[Slides adapted from 6.790]

Supervised Learning
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dimensionality reduction, embedding

[Mikolov et al., 2013]

de-noising diffusion models over images

Over 3D protein structures, etc. 

[Slides adapted from 6.790]

+Self-Supervised 
paradigm

Unsupervised Learning
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ChatGPT

[Slides adapted from 6.790]

Reinforcement Learning



More Learning Paradigms
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Supervised learning

X y

Multimodal (supervised) learning

X1
y

X2

Multitask learning

X
y1

y2

Transfer learning

X y1

X y2

Unsupervised/self-supervised
pre-training

X X’

X y

Cross-modal learning

X1 y

X2 y



More Interactive Learning Paradigms

28

Curriculum/active learning

X y (easy)

X y (hard)

X … r

Reinforcement learning

LLM adaptation

X y

X y + language

Human-in-the-loop learning

X y (human eval)

X y…



Learning Process
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We want a “good” way to label our data

• How to label? Learn a model  

• We typically consider a class of possible 
models

Input:
Data

Output:
Label

how well our model labels new data depends
largely on how good the chosen model class is



Overfitting vs Generalization
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What we really want is to generalize to
future data!

What we don’t want:
• Model does not capture the input-output 

relationship → Underfitting
• Model too specialized to training data → Overfitting

Split collected data into training, validation, and testing.
Critical to make sure test data conditions match real-
time deployment conditions.

Output:

Label



Evaluation Metric
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Hopefully predict well on future data

    How good is a model at one point? 

• Quantify the error using a 

loss function,
g: guess
 a: actual

• For regression: squared loss h: hypothesis function (outputs g)
 x: input, θ: parameters, y: actual

• Training error: 

• Validation or Test error (n’ new points):



Summary: How To Data

1. Decide how much data to collect, and how much to label (costs and time)
2. Clean data: normalize/standardize, find noisy data, anomaly/outlier detection
3. Visualize data: plot, dimensionality reduction (PCA, t-sne), cluster analysis
4. Decide on evaluation metric (proxy + real, quantitative and qualitative)
5. Choose model class and learning algorithm (more next lecture)
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Lecture Summary

Vision, language, audio, sensing, set, graph modalities1

2 Modality profile

3 Types of data and labels

4 Common learning objectives and generalization
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Assignments for This Coming Week

No reading assignment this week.

For project:
• Project preference form (Due tonight 2/11 at 9pm ET)

• If not team yet, mingle and find teams now!

• Project proposal presentations next Thursday (2/20) in class

• Instructions will be sent out via piazza, roughly 5 mins/5 slides per team motivating problem 
(broad impact + intellectual merit), existing work, datasets used, rough research ideas.

• Today and Thursday 2-3pm – meet with me at E15-392 so I can give feedback on ideas.

This Thursday: (optional) tutorial on ML tools – Pytorch, Huggingface, GPUs, Wandb

Before Thursday, register for huggingface and Wandb account
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